MINED BY:		FILE NO. CAS-P00888
6		
Da kan	EMERGING DISPLAY	ISSUE: NOV.24, 2023
OVED BY:	TECHNICA COURT CONNON ATTION	TOTAL PAGE: 31
	TECHNOLOGIES CORPORATION	VERSION: P
Justin Horng		VERSION · I
CUSTOMER	ACCEPTANCE SPEC	CIFICATIONS
FOR	no Display distribute	Sation Value 1.
DATE:		
BA:		

https://www.edtc.com/ https://smartembeddeddisplay.com/

EMERG	ING DI	SPLAY	MODEL NO.	VERSION	PAGE
	OGIES CORP		EIML101022DYA	P	0-1
			DOC. FIRST ISSUE		
RECORD		EVISION		No	OV.24, 2023
DATE	REVISED PAGE		SUMMARY		
	NO.				
1					
			Led for Corporation of Led for Aithor Walthout Williams and Corporation of the Corporatio	4.	
				77.	
		STEIDE THOU	\$\frac{1}{2}\text{0}'		
				00.	
			CO 319 10		
			The Continue of the Continue o		
) 10th	1000		
			4		
		to			
		.69			
	•	0°0 X	0'		
	25	2 40			
		00			
		y			
		The Display			

E M E R G I N G D I S P L A Y TECHNOLOGIES CORPORATION

 MODEL NO.
 VERSION
 PAGE

 E I M L 1 0 1 0 2 2 D Y A
 P
 0-2

TABLE OF CONTENTS

NO.	I T E M	PAGE
1.	GENERAL SPECIFICATIONS	1
2.	MECHANICAL SPECIFICATIONS	1,2
3.	ABSOLUTE MAXIMUM RATINGS	3
4.	ELECTRICAL CHARACTERISTICS	4
5.	TIMING CHARACTERISTICS	5 ~ 14
6.	OPTICAL CHARACTERISTICS	15,16
7.	OUTLINE DIMENSIONS	17
8.	BLOCK DIAGRAM	18
9.	DETAIL DRAWING OF DOT MATRIX	19
10.	INTERFACE SIGNALS	20
11.	POWER SUPPLY	21
12.	CAPACITIVE TOUCH PANEL SPECIFICATION	22
13.	INSPECTION CRITERIA	23 ~ 28
14.	RELIABILITY TEST	29
15.	CAUTION	30,31
	Cilletifus Douglastibute	

MODEL NO.	VERSION	PAGE
EIML101022DYA	P	1

1. GENERAL SPECIFICATIONS

1.1 DATA SHEETS FOR CONTROLLER / DRIVER PLEASE REFER TO:

ILI 9882T OR EQUIVALENT

1.2 MATERIAL SAFETY DESCRIPTION

ASSEMBLIES SHALL COMPLY WITH EUROPEAN ROHS REQUIREMENTS, INCLUDING PROHIBITED MATERIALS/COMPONENTS CONTAINING LEAD, MERCURY, CADMIUM, HEXAVALENT CHROMIUM, POLYBROMINATED BIPHENYLS (PBB) AND POLYBROMINATED DIPHENYL ETHERS (PBDE), BIS(2-ETHYLHEXYL) PHTHALATE (DEHP), BUTYL BENZYL PHTHALATE (BBP), DIBUTYL PHTHALATE (DBP), DIISOBUTYL PHTHALATE (DIBP).

2. MECHANICAL SPECIFICATIONS

2.1 TFT LCD MODULE MECHANICAL SPECIFICATIONS

(1) DISPLAY SIZE	10.1 inch
(2) NUMBER OF DOTS	1200(RGB)W * 1920H DOTS
(3) MODULE SIZE	140.66W * 226.61H * 8.7D(MAX.) mm
(4) ACTIVE AREA	135.36W * 216.576H mm
(5) DOT SIZE	0.0376W * 0.1128H mm
(6) PIXEL SIZE	0.1128W * 0.1128H mm
(7) LCD TYPE	TFT, IPS, TRANSMISSIVE, NORMALLY
	BALCK
(8) COLOR	16.7M
(9) VIEWING DIRECTION	SUPER WIDE VIEW
(10) BACK LIGHT	LED , COLOR : WHITE
(11) INTERFACE MODE	MIPI
(12) WEIGHT	TBD

MODEL NO. VERSION **PAGE** E I M L 1 0 1 0 2 2 D Y A P 2

2.2 CAPACITIVE TOUCH PANEL MECHANICAL SPECIFICATIONS

(1) TOUCH PANEL SIZE	- 140.66W * 226.61H mm - 135.36W * 216.576H mm
(6) RESOULTION	- 1200 * 1920
(7) INTERFACE MODE	- IZC
(4) INPUT TYPE (5) NUMBER OF TOUCH SENSOR (6) RESOULTION (7) INTERFACE MODE (8) THE MATERIAL OF COVER LENS	Corporation Value of the Corporation of the Corpora

MODEL NO.	VERSION	PAGE
E I M L 1 0 1 0 2 2 D Y A	P	3

3. ABSOLUTE MAXIMUM RATINGS

3.1 ELECTRICAL ABSOLUTE MAXIMUM RATINGS

ITEM	SYMBOL	MIN. MAX.		UNIT	REMARK
	VDD-VSS	-0.3	1.95	V	_
POWER SUPPLY VOLTAGE	AVDD-VSS	-0.3	6.3	.3 V —	
	AVEE-VSS	-6.3	0.3	V	_
POWER DISSIPATION FOR	PD		(9900)	mW	
LED BACKLIGHT	1 D		(9900)	111 ٧٧	
FORWARD CURRENT FOR LED BACKLIGHT	ILED	_	(600)	mA	<i>y</i> . –
STATIC ELECTRICITY	_	_	_	V	NOTE(1)

NOTE (1): LCM SHOULD BE GROUND DURING LCM HANDLING.

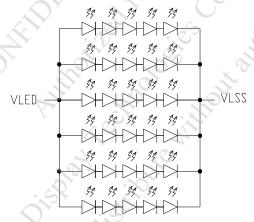
NOTE (2): THE ABSOLUTE MAXIMUM RATING VALUES OF THIS PRODUCT ARE NOT ALLOWED TO BE EXCEEDED AT ANY TIMES. SHOULD A MODULE BE USED WITH ANY OF THE ABSOLUTE MAXIMUM RATINGS EXCEEDED, THE CHARACTERISTICS OF THE MODULE MAY NOT BE RECOVERED, OR IN AN EXTREME CASE, THE MODULE MAY BE PERMANENTLY DESTROYED.

3.2 ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS

ITEM	OPERATING		STORAGE		REMARK	
TIEW	MIN.	MAX.	MIN.	MAX.	KEWAKK	
AMBIENT TEMPERATURE	(-20°C)	(70°C)	-20°C	70°C	NOTE (1),(2),(3),(4)	
HUMIDITY	NOTI	E((2))	NOTI	7(2)	WITHOUT	
HOWIDH I	NOTE (3)		NOTE(3)		CONDENSATION	
LUDD A TION	0	2.45 m/s^2		11.76 m/s^2	10~100 Hz	
VIBRATION		(0.25 G)		(1.2 G)	XYZ DIRECTIONS 1 HR EACH	
GHOOM		29.4 m/s^2		490 m/s^2	10 ms	
SHOCK	- -	(3G)		(50G)	XYZ DIRECTIONS 1 TIME EACH	
CORROSIVE GAS	NOT ACC	EPTABLE	NOT ACC	EPTABLE	_	

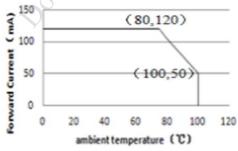
- NOTE (1): THE ABSOLUTE MAXIMUM RATINGS OF THIS PRODUCT SHOULD NOT BE EXCEEDED AT ANY TIME. IF THESE RATINGS ARE EXCEEDED, THE PRODUCT'S PERFORMANCE IS NOT GUARANTEED AND THE PRODUCT MAY EXPERIENCE PERMANENT DAMAGE.
- NOTE (2) : BACKGROUND COLOR CHANGES SLIGHTLY DEPENDING ON AMBIENT TEMPERATURE THIS PHENOMENON IS REVERSIBLE.
- NOTE (3): $Ta \le 60^{\circ}C : 90\% \text{ RH MAX.} (96\text{HRS MAX}).$
 - $Ta > 60^{\circ}C$: ABSOLUTE HUMIDITY MUST BE LOWER THAN THE HUMIDITY OF 90% RH AT 90°C(96 HRS MAX).
- NOTE (4): WHEN THE LCD MODULE IS OPERATED AT A HIGHER AMBIENT TEMPERATURE THAN 60°C, THE PWM DUTY CYCLE OF THE LED BACKLIGHT SHOULD BE ADJUSTED TO BE LESS THAN TBD%. IF THE MODULE IS OPERATED AT A HIGHER DUTY CYCLE THAN TBD, THEN THERE IS A POSSIBILITY OF DISTORTION AND IRREGULARITY OF THE PICTURE DUE TO LIQUID CRYSTAL BEHAVIOR.

MODEL NO.	VERSION	PAGE
EIML101022DYA	P	4


4. ELECTRICAL CHARACTERISTICS

 $Ta = 25 \, ^{\circ}C$

			-				$\frac{1a-23}{2}$
ITEM	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	REMARK
POWER SUPPLY VOLTAGE	VDD-VSS	_	(1.65)	(1.80)	(1.95)	V	
POWER SUPPLY VOLTAGE FOR	AVDD -VSS		(4.5)	(5.5)	(6.3)	V	
CIRCUITS	AVEE -VSS		(-6.3)	(-5.5)	(-4.5)	V	
POWER SUPPLY CURRENT	IDD	VDD-VSS=(1.80)V	_	TBD	TBD	mA	NOTE (1)
POWER SUPPLY CURRENT FOR	IAVDD	AVDD-VSS=(5.0)V		TBD	TBD	△ : •	
CIRCUITS	IAVEE	AVEE-VSS=(-5.0)V		TBD	TBD	mA	
POWER SUPPLY VOLTAGE FOR LED BACKLIGHT	VLED- VLSS	IF=(600)mA	14	TBD	16.5	V	
LED LIFE TIME	_	(I _{LED} =80mA) (PER LED)	(50K)	-3		HRS	NOTE (4) NOTE (5)


NOTE (1): THE DISPLAY PATTERN IS ALL "WHITE".

NOTE (2): INTERNAL CIRCUIT DIAGRAM OF BACKLIGHT

NOTE (3): AMBIENT TEMP. VS. ALLOWABLE FORWARD CURRENT.(PER LED)

Ambient Temperature VS Maximum Forward Current

NOTE (4): CONDITIONS; TA=25 °C, CONTINUOUS LIGHTING.

NOTE (5): DEFINITIONS OF LIFE TIME

LCD LUMINANCE BECOMES HALF OF THE INITIAL VALUE.

EMERGING DISPLAY TECHNOLOGIES CORPORATION MODEL NO. EIML101022DYA

VERSION PAGE
P 5

5. TIMING CHARACTERISTICS

5.1 FOR LCD MODULE

5.1.1 DC CHARACTERISTICS FOR PANEL DRIVING

ITEM	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT		
POWER &	& OPERATI	ON VOLTAGE						
LOGIC OPERATING VOLTAGE	IOVCC	_	1.65	1.8	1.95	V		
OPERATING VOLTAGE	AVDD		4.5	5.5	6.3	V		
OPERATING VOLTAGE	AVEE	_	-6.3	-5.5	-4.5	V		
LOGIC OPERATING VOLTAGE	VDDAM	_	1.65	1.8	1.95	V		
LOGIC HIGH LEVEL INPUT VOLTAGE	V_{IH}	_	0.7* VDD	37	VDD	V		
LOGIC LOW LEVEL INPUT VOLTAGE	V_{IL}	_	0		0.3* VDD	V		
LOGIC HIGH LEVEL OUTPUT VOLTAGE TE, LEDPWM	Voh	I _{OH} =-1.0mA	0.8* VDD		VDD	V		
LOGIC LOW LEVEL OUTPUT VOLTAGE TE, LEDPWM	Vol	I _{OH} =+1.0mA	0	3	0.2* VDD	V		
DRIVER SUPPLY VOLTAGE	-3		0		32	V		
VCOM OPERATION								
DC VCOM AMPLITUDE VOLTAGE	VCOM		-4.0		0	V		
S	OURCE DR	IVERG	0					
POSITIVE SOURCE OUTPUT RANGE	V_{SOUT}	6 $ 3$	0.2		GVDDP	V		
NEGATIVE SOURCE OUTPUT RANGE	Vsout		GVDDN	_	-0.2	V		
POSITIVE GAMMA REFERENCE VOLTAGE	GVDDP	1 2010	3	_	6	V		
NEGATIVE GAMMA REFERENCE VOLTAGE	GVDDN		-6	_	-3	V		
SOURCE OUTPUT SETTING TIME	Tr	BELOW WITH 99% PRECISION	_	3.5		us		
SOURCE OUTPUT DEVIATION VOLTAGE	V _{DEV}	SOUT >=4.2V SOUT <=0.8V	_	20	30	mV		
O Y	·S	4.2V> SOUT >0.8V		10	15	mV		
SOURCE OUTPUT OFFSET VOLTAGE	Voffset	<u> </u>		4		mV		
BOOSTER OPERATION3								
GATE DRIVER HIGH VOLTAGE	VGHO	_	3		20	V		
GATE DRIVER LOW VOLTAGE	VGLO	_	-3	_	-16	V		
CHARGE PUMP HIGH VOLTAGE	VGH		6		20			
CHARGE PUMP LOW VOLTAGE	VGL		-6		-16			
HALF AVDD CHARGE PUMP	VCIP			1/2* AVDD				

MODEL NO.	VERSION	PAGE
EIML101022DYA	P	6

5.1.2 DC CHARACTERISTICS FOR DSI LP MODE

DC LEVELS OF THE LP-00, LP-01, LP-10 AND LP-11 ARE DEFINED ON TABLE BELOW. DC CHARACTERISTICS FOR DSI LP MODE WHEN LP-RX, LP-CD OR LP-TX IS MENTIONED ON THE CONDITION COLUMN.

			SDEG	CIFICAT	TION	
ITEM	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
LOGIC HIGH LEVEL OUTPUT VOLTAGE	V _{OHLP}	IOUT = -1mA	0.8* VDDAM	_	VDDAM	V
LOGIC LOW LEVEL OUTPUT VOLTAGE	Vollp	IOUT = 1mA	0.0		0.2* VDDAM	V
LOGIC HIGH LEVEL INPUT VOLTAGE	V_{IHLPCD}	LP-CD	450		1350	mV
LOGIC LOW LEVEL INPUT VOLTAGE	$V_{\rm ILLPCD}$	LP-CD	0.0	Y	200	mV
LOGIC HIGH LEVEL INPUT VOLTAGE	V_{IHLPRX}	LP-RX (CLK, D0, D1, D2, D3)	880	202	1350	mV
LOGIC LOW LEVEL INPUT VOLTAGE	VILLPRX	LP-RX (CLK, D0, D1, D2, D3)	0.0	_	550	mV
LOGIC LOW LEVEL INPUT VOLTAGE	VILLPRXULP	LP-RX (CLK ULP mode)	0.0		300	mV
LOGIC HIGH LEVEL OUTPUT VOLTAGE	VOHLPTX	LP-TX (D0)	1.1		1.3	V
LOGIC LOW LEVEL OUTPUT VOLTAGE	VOLLPTX	LP-TX (D0)	-50	<u> </u>	50	mV
LOGIC HIGH LEVEL INPUT CURRENT	I _{IH}	LP-CD, LP-RX	-		10	uA
LOGIC LOW LEVEL INPUT CURRENT	In	LP-CD, LP-RX	-10	_	_	uA
LOGIC LOW LEVEL INPUT CURRENT In: LP-CD, LP-RX -10 — uA						

MODEL NO.	VERSION	PAGE
EIML101022DYA	P	7

5.1.3 DC CHARACTERISTICS FOR DSI HS MODE

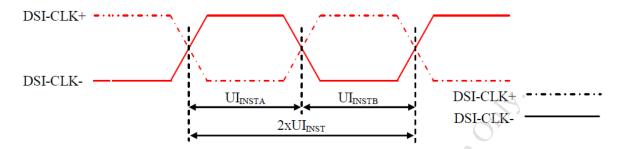
ITEM			SPE	CIFICAT	ION	UNIT	
ITEM	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNII	
INPUT COMMON MODE VOLTAGE FOR CLOCK	V _{CMCLK}	DSI-CLK+/- Note 2, Note 3	70	_	330	mV	
INPUT COMMON MODE VOLTAGE FOR DATA	V _{CMDATA}	DSI-Dn+/- Note 2, Note 3, Note 5	70	_	330	mV	
COMMON MODE RIPPLE FOR CLOCK EQUAL OR LESS THAN 450MHz	VCMRCLKL450	DSI-CLK+/- Note 4	-50	_	50	mV	
COMMON MODE RIPPLE FOR DATA EQUAL OR LESS THAN 450MHz	VCMRDATAL4 50	DSI-Dn+/- Note 4, Note 5	-50		50	mV	
COMMON MODE RIPPLE FOR CLOCK MORE THAN 450MHz (PEAK SINE WAVE)	VCMRCLKM45	DSI-CLK+/-	- (100	mV	
COMMON MODE RIPPLE FOR DATA MORE THAN 450MHz (PEAK SINE WAVE)	VCMRDATAM4 50	DSI-Dn+/- Note 5	10	2	100	mV	
DIFFERENTIAL INPUT LOW LEVEL THRESHOLD VOLTAGE FOR CLOCK	V _{THLCLK} -	DSI-CLK+/-	-70	10	_	mV	
DIFFERENTIAL INPUT LOW LEVEL THRESHOLD VOLTAGE FOR DATA	V _{THLDATA} -	DSI-Dn+/- Note 5	-70			mV	
DIFFERENTIAL INPUT HIGH LEVEL THRESHOLD VOLTAGE FOR CLOCK	V _{THHCLK+}	DSI-CLK+/-	20,	_	70	mV	
DIFFERENTIAL INPUT HIGH LEVEL THRESHOLD VOLTAGE FOR DATA	V _{THHDATA+}	DSI-Dn+/- Note 5		_	70	mV	
SINGLE-ENDED INPUT LOW VOLTAGE	Vilhs	DSI-CLK+/-, DSI-Dn+/- Note 3, Note 5	-40	_	_	mV	
SINGLE-ENDED INPUT HIGH VOLTAGE	Vihhs	DSI-CLK+/-, DSI-Dn+/- Note 3, Note 5	_	_	460	mV	
DIFFERENTIAL TERMINATION RESISTOR	RTERM	DSI-CLK+/-, DSI-Dn+/- Note 5	80	100	125	Ω	
SINGLE-ENDED THRESHOLD VOLTAGE FOR TERMINATION ENABLE	V _{TERM-EN}	DSI-CLK+/-, DSI-Dn+/- Note 5		_	450	mV	
TERMINATION CAPACITOR	Cterm	DSI-CLK+/-, DSI-Dn+/- Note 5, Note 6	_	_	60	pF	

NOTE(1): Ta = -30 TO 70°C (TO +85°C NO DAMAGE), VDD=1.65V~1.95V, AVDD=4.5V~6.6V, AVEE=-4.5V~-6.6V, VSS=AVSS=0V.

NOTE(2): INCLUDES 50mV (-50mV to 50mV) GROUND DIFFERENCE.

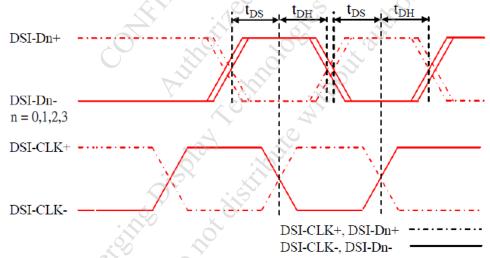
NOTE(3): WITHOUT VCMRCLKM450/VCMRDATAM450.

NOTE(4): WITHOUT 50mV (-50mV to 50mV) ground difference.

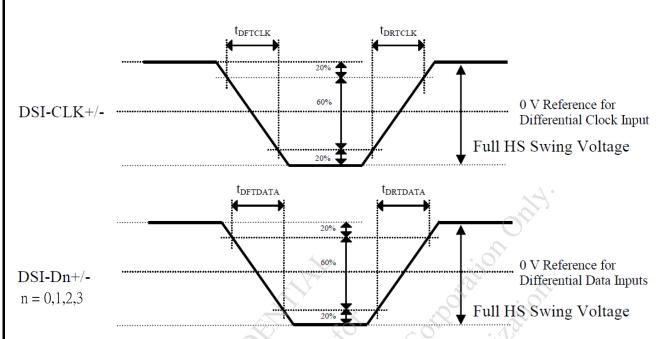

NOTE(5): n = 0,1,2,3

NOTE(6): FOR HIGHER BIT RATES A 14pF CAPACITOR WILL BE NEEDED TO MEET THE COMMON-MODE RETURN LOSS SPECIFICATION.

5.2 AC CHARACTERISTICS


5.2.1 DSI TIMING CHARACTERISTICS

5.2.1.1 HIGH SPEED MODE – CLOCK CHANNEL TIMING

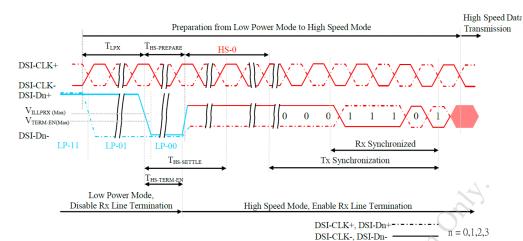

ITEM	SIGNAL	SYMBOL	MIN.	MAX.	UNIT
DOUBLE UI INSTANTANEOUS	DSI-CLK+/-	2xUiinst	1.66	25	Ns
UI INSTANTANEOUS HALF	DSI-CLK+/-	Uiinsta,Uiinstb	0.83	12.5	ns

5.2.1.2 HIGH SPEED MODE – DATA CLOCK CHANNEL TIMING

ITEM	SIGNAL	SYMBOL	MIN.	MAX.
DATA TO CLOCK SETUP TIME	DSI-Dn+/- (n=0,1,2,3)	$t_{ m DS}$	0.15xUI	
CLOCK TO DATA HOLD TIME		t _{DH}	0.15xUI	

5.2.1.3 HIGH SPEED MODE – CLOCK CHANNEL TIMING

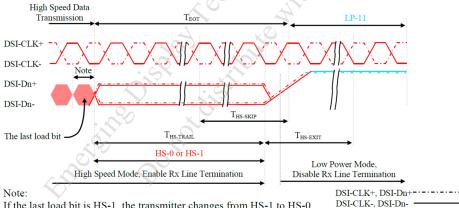
RISE AND FALL TIMINGS ON CLOCK AND DATA CHANNELS


ITEM	SYMBOL	CONDITION	SPECIFICATION			
TTEW	SIMBOL	CONDITION	MIN.	MAX.	UNIT	
DIFFERENTIAL RISE TIME FOR CLOCK	tdrtclk	DSI-CLK+/-	150 ps		0.3UI	
DIFFERENTIAL RISE TIME FOR DATA	t _{DRTDATA}	DSI-Dn+/- (n=0,1,2,3)	150 ps		0.3UI	
DIFFERENTIAL FALL TIME FOR CLOCK	tdftclk	DSI-CLK+/-	150 ps		0.3UI	
DIFFERENTIAL FALL TIME FOR DATA	tdftdata	DSI-Dn+/- (n=0,1,2,3)	150 ps		0.3UI	

NOTE(1): THE DISPLAY MODULE HAS TO MEET TIMING REQUIREMENTS, WHAT ARE DEFINED FOR THE TRANSMITTER (MCU) ON MIPI D-PHY STANDARD.

VERSION P

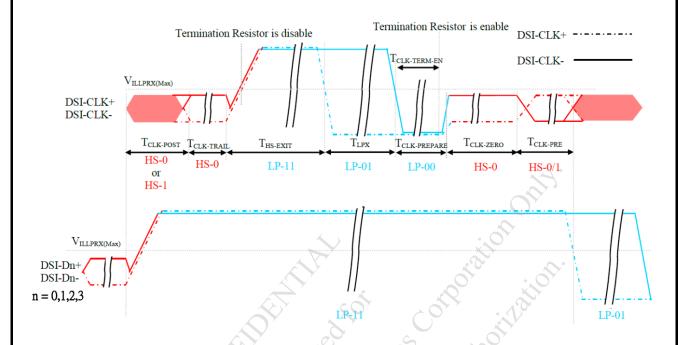
PAGE 10


5.2.1.4 DATA LANES FROM LOW POWER MODE TO HIGH SPEED MODE

DATA LANES – LOW POWER MODE TO HIGH SPEED MODE TIMINGS

SIGNAL	SYMBOL	DESCRIPTION	MIN.	MAX.	UNIT
DSI-Dn+/-	T_{LPX}	LENGTH OF ANY LOW POWER STATE	50	<i>O</i> .	12.0
(n=0,1,2,3)	1 LPX	PERIOD	30) · —	ns
DSI-Dn+/-	Т	TIME TO DRIVE LP-00 TO PREPARE	40+4XUI	05 CVI II	***
(n=0,1,2,3)	Ths-prepare	FOR HS TRANSMISSION	40±4XUI	8370701	ns
	_	TIME TO ENABLE DATA LANE			
DSI-Dn+/-	Т	RECEIVER LINE TERMINATION		35+4XUI	40.0
(n=0,1,2,3)	Ths-term-en	MEASURED FROM WHEN DN	<u> </u>	3574AUI	ns
	A	CROSSES VILMAX			

5.2.1.5 DATA LANES FROM HIGH SPEED MODE TO LOW POWER MODE


If the last load bit is HS-1, the transmitter changes from HS-1 to HS-0. If the last load bit is HS-0, the transmitter changes from HS-0 to HS-1.

IS-1. n = 0,1,2,3

DATA LANES - HIGH SPEED MODE TO LOW POWER MODE TIMINGS

SIGNAL	SYMBOL	DESCRIPTION	MIN.	MAX.	UNIT
DSI-Dn+/- (n=0,1,2,3)	Ths-skip	TIME-OUT AT DISPLAY MODULE (ILI9882T) TO IGNORE TRANSITION PERIOD OF EOT	40	55+4xUI	ns
DSI-Dn+/- (n=0,1,2,3)	T _{HS-EXIT}	TIME TO DRIVER LP-11 AFTER HS BURST	100		ns
DSI-Dn+/- (n=0,1,2,3)	Ths-trail	TIME THAT THE TRANSMITTER DRIVES THE FLIPPED DIFFERENTIAL STATE AFTER LAST PAYLOAD DATA BIT OF A HS TRANSMISSION BURST	max(8*UI, 60ns+ 4*UI)		ns

CLOCK LANES - HIGH SPEED MODE TO/FROM LOW POWER MODE TIMINGS

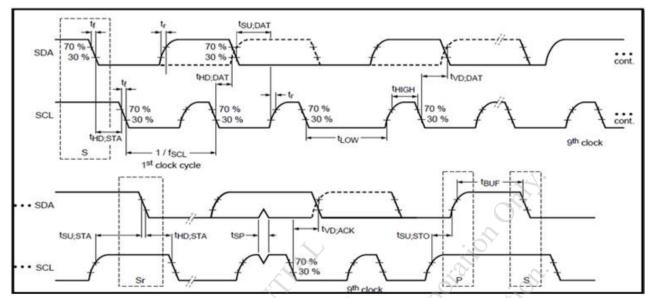
SIGNAL	SYMBOL	DESCRIPTION	MIN.	MAX.	UNIT
DSI-CLK+/-	T _{CLK-POST}	TIME THAT THE MCU SHALL CONTINUE SENDING HS CLOCK AFTER THE LAST ASSOCIATED DATA LANES HAS TRANSITIONED TO LP MODE	60+52xUI		ns
DSI-CLK+/-	Tclk-trail	TIME TO DRIVE HS DIFFERENTIAL STATE AFTER LAST PAYLOAD CLOCK BIT OF A HS TRANSMISSION BURST	60		ns
DSI-CLK+/-	Ths-exit	TIME TO DRIVE LP-11 AFTER HS BURST	100	_	ns
DSI-CLK+/	Tclk-prepare	TIME TO DRIVE LP-00 TO PREPARE FOR HS TRANSMISSION	38	95	ns
DSI-CLK+/-	Tclk-term-en	TIME-OUT AT CLOCK LANE TO ENABLE HS TERMINATION	_	38	ns
DSI-CLK+/-	Tclk-prepare	MINIMUM LEAD HS-0 DRIVE PERIOD BEFORE STARTING CLOCK	38		ns
DSI-CLK+/-	Tclk-pre	TIME THAT THE HS CLOCK SHALL BE DRIVEN PRIOR TO ANY ASSOCIATED DATA LANE BEGINNING THE TRANSITION FROM LP TO HS MODE	8xUI	_	ns

5.3 RESET TIMING

RESET TIMING

ITEM	SIGNAL	SYMBOL	MIN.	MAX.	UNIT
RESET PULSE DURATION		Trw	10		us
RESET CANCEL	RESX	Trt	35 (NOTE 1,5)	_	ms
ESEI CANCEL		o In	150 (NOTE 1,6,7)	_	ms
RESET PULSE DURATION	TP_RESX	Trw_tp	10	_	us

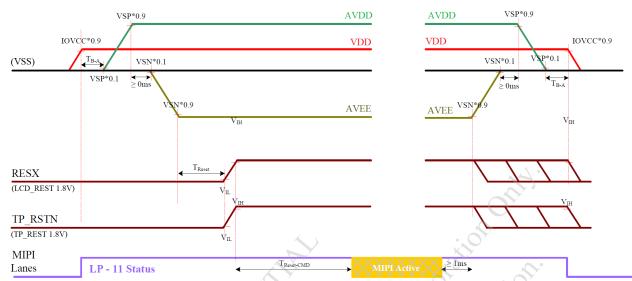
NOTE(1): THE RESET CANCEL INCLUDES ALSO REQUIRED TIME FOR LOADING ID BYTES, VCOM SETTING AND OTHER SETTINGS FROM NVM TO REGISTERS. THIS LOADING IS DONE EVERY TIME WHEN THERE IS H/W RESET CANCEL TIME (TRT) WITHIN 5 MS AFTER A RISING EDGE OF RESX.


NOTE(2) : SPIKE DUE TO AN ELECTROSTATIC DISCHARGE ON RESX LINE DOES NOT CAUSE IRREGULAR SYSTEM RESET ACCORDING TO THE FOLLOWING TABLE.

RESX	Action
SHORTER THAN 5us	RESET REJECTED
LONGER THAN 9us	RESET
BETWEEN 5us AND 9us	RESET STARTS

NOTE(3): DURING THE RESETTING PERIOD, THE DISPLAY WILL BE BLANKED (THE DISPLAY IS ENTERING BLANKING SEQUENCE, WHICH MAXIMUM
TIME IS 120 MS, WHEN RESET STARTS IN SLEEP OUT MODE. THE DISPLAY REMAINS THE BLANK STATE IN SLEEP IN MODE.) AND RETURN TO DEFAULT CONDITION FOR HARDWARE RESET.

NOTE(4): SPIKE REJECTION ALSO APPLIES DURING A VALID RESET PULSE AS SHOWN IN FOLLOWING FIGURE.


5.3.1 I2C Interface Timing

RESET TIMING

	X >	FAST-	MODE	
ITEM	SYMBOL	MIN.	MAX.	UNIT
SCL CLOCK FREQUENCY	f_{SCL}	0	400	kHz
HOLD TIME START CONDITION	thd:sta	0.6	_	us
LOW PERIOD OF THE SCL CLOCK	tLow	1.3	_	us
HIGH PERIOD OF THE SCL CLOCK	t_{High}	0.6		us
SET-UP TIME FOR A REPEATED START CONDITION	tsu:sta	0.6		us
DATA HOLD TIME	thd:dat	100		ns
DATA SET-UP TIME	tsu:dat	100		ns
RISE TIME OF BOTH SDA AND SCL SIGNALS (30% TO 70%)	tr	_	300	ns
FALL TIME OF BOTH SDA AND SCL SIGNALS (70% TO 30%)	tf		300	ns
SIGNAL PULSE GLITCH TOLERANCE	t_{SP}		50	ns
SET-UP TIME FOR STOP CONDITION	t _{SU:STO}	0.6		us
BUS FREE TIME BETWEEN A STOP AND START CONDITION	$t_{ m BUF}$	1.3	_	us

5.4 POWER ON/OFF SEQUENCE

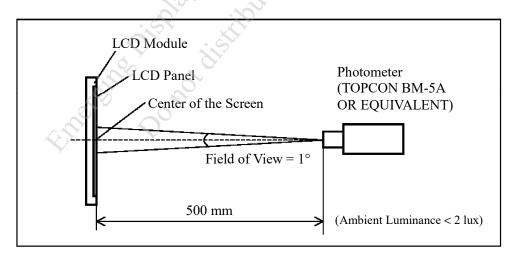
TIMING RELATION OF POWER ON/OFF SEQUENCE

SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNIT
TRise1	IOVCC RISE TIME	0.05		20	ms
T _{Rise2}	AVDD/AVEE RISE TIME	0.05		20	ms
T_{Fall}	EXTERNAL POWER FALL TIME	0.05		20	ms
Тв-А	DELAY TIME BETWEEN TWO EXTERNAL POWER	2	5		ms
T_{Reset}	DELAY TIME BETWEEN EXTERNAL POWER AND RESET	4	10		ms
T _{Reset-CMD}	RESET TO FIRST COMMAND IN DISPLAY SLEEP IN MODE	10			ms
Vinit	INITIALIZE VOLTAGE			100	mV

NOTE(1): BEFORE VDDI POWER ON, PLEASE MAKE SURE VDDI, VDD, VDD_TP ARE UNDER 100mV FOR 10ms.

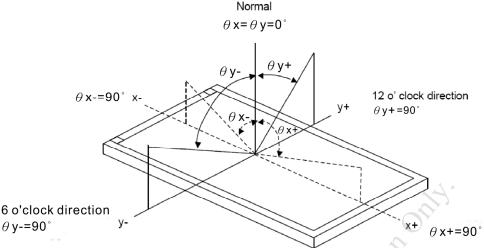
MODEL NO.	VERSION	PAGE
E I M L 1 0 1 0 2 2 D Y A	P	15

6. OPTICAL CHARACTERISTICS (NOTE 1)


6.1 OPTICAL CHARACTERISTICS

Ta=25±2°C

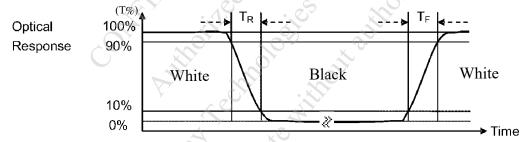
ITEM		SYMBOL	COND	ITION	MIN.	TYP.	MAX.	UNIT	REMARK
WEWING ANGLE		θ_{y^+}	CR ≥ 10	$\theta_{x}=0^{\circ}$	(75)	(80)		daa	
		$\theta_{ ext{y-}}$			(75)	(80)			NOTE (2)
VIEWING ANGLE	VIEWING ANGLE				(75)	(80)		deg.	NOTE (3)
		θ_{x}		$\theta_y=0^{\circ}$	(75)	(80)	_		
CONTRAST RATIO	(CENTER)	CR	000	000	(1200)				NOTE(3)
RESPONSE TIME		Tr + Tf	θx=0°,	бу-0		25	30	msec	NOTE (4)
	WHITE	Wx			(0.597)	(0.647)	(0.697)	×)	
	WIIIIE	Wy		=0°, θy=0°	(0.268)	(0.318)	(0.368)		NOTE(5)
G 0.7 0.7	RED	Rx	* \		(0.213)	(0.263)	(0.313)	25	
COLOR CHROMATICITY		RY	ILED=		(0.499)	(0.549)	(0.599)		
(CENTER)	GREEN	Gx			(0.090)	(0.140)	(0.190)		
,	GREEN	Gy			(0.040)	(0.090)	(0.140)		
	BLUE	Bx		(64.7%)	(0.236)	(0.286)	(0.336)		
	BLUE	By	5		(0.256)	(0.306)	(0.356)		
THE BRIGHTNESS		В	:10	,	(900)	(1000)		cd/m ²	NOTE (6)
OF MODULE (CENTER)		ь	O.	. 09	(900)	(1000)		Cu/III	NOIE (0)
THE UNIFORMITY OF				0	70	75		%	NOTE (7)
MODULE				0	/0	13		/0	NOIE (/)


NOTE (1): TEST CONDITION:

AFTER STABILIZING AND LEAVING THE PANEL ALONE AT A GIVEN TEMPERATURE FOR 30 MINUTES. MEASUREMENT SHOULD BE EXECUTED IN A STABLE, WINDLESS, AND DARK ROOM.

MODEL NO. VERSION PAGE E I M L 1 0 1 0 2 2 D Y A P 16

NOTE (2): DEFINITION OF VIEWING ANGLE:

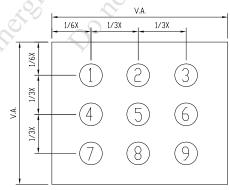


NOTE (3): DEFINITION OF CONTRAST RATIO (CR):

MEASURED AT THE CENTER POINT OF MODULE

 $CONTRAST \ RATIO(CR) = \frac{BRIGHTNESS \ MEASURED \ WHEN \ LCD \ IS \ AT \ "WHITE STATE"}{BRIGHTNESS \ MEASURED \ WHEN \ LCD \ IS \ AT \ "BLACK STATE"}$

NOTE (4): DEFINITION OF RESPONSE TIME: T_R AND T_F
THE FIGURE BELOW IS THE OUTPUT SIGNAL OF THE PHOTO DETECTOR.


NOTE (5): DEFINITION OF COLOR CHROMATICITY

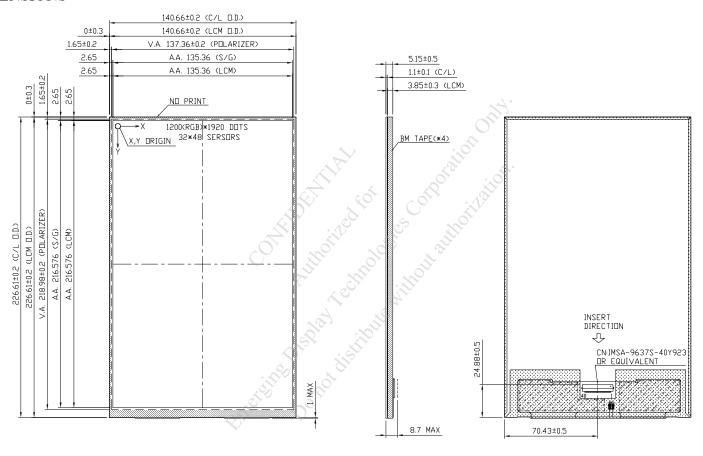
(a)100% RGB PIXEL DATA TRANSMISSION WHEN ALL THE INPUT TERMINALS OF MODULE ARE ELECTRICALLY POWERED ON.

(b)MEASURED AT THE CENTER POINT OF MODULE

NOTE (6): MEASURED THE BRIGHTNESS OF WHITE STATE AT CENTER POINT.

NOTE (7): (a) DEFINITION OF BRIGHTNESS UNIFORMITY

UNIT: mm


(b)THE BRIGHTNESS UNIFORMITY CALCULATING METHOD

UNIFORMITY: MINIMUM BRIGHTNESS
MAXIMUM BRIGHTNESS
*100%

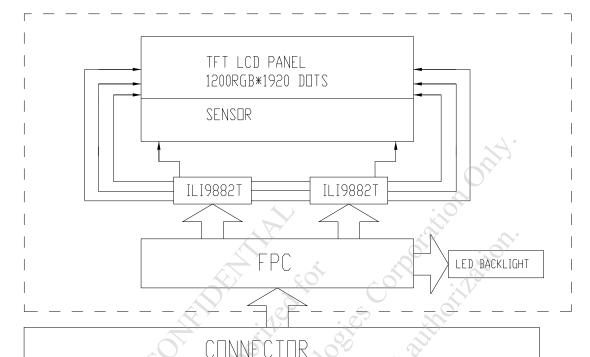
VERSION P

PAGE 17

7. OUTLINE DIMENSIONS

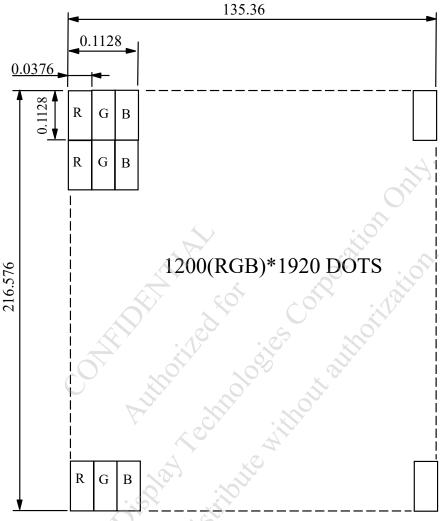
UNIT : mm SCALE : NTS

THIRD ANGLE PROJECTION


NOT SPECIFIED TOLERANCE IS \pm 0.5

NOTE:

 $1.\ C/L\ GLASS: SODA-LIME, NON-STRENGTHEN, CHAMFERED\ EDGES.$

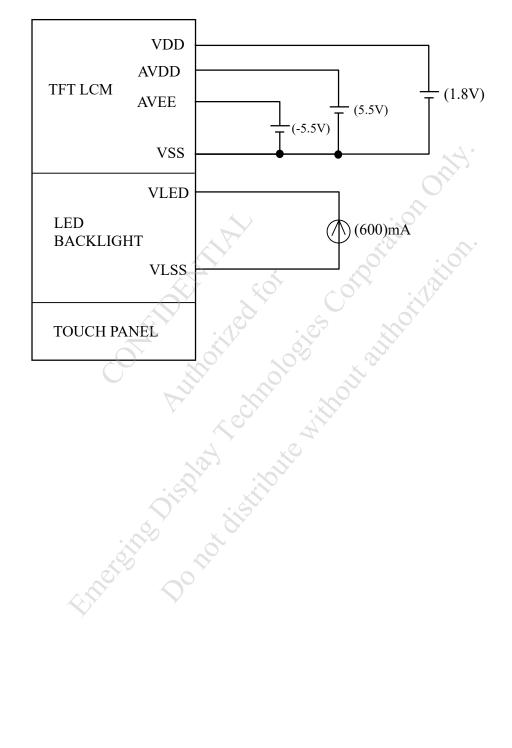

8. BLOCK DIAGRAM

8.1 TFT AND CTP MODULE

9. DETAIL DRAWING OF DOT MATRIX

UNIT : mm SCALE : NTS

NOT SPECIFIED TOLERANCE IS \pm 0.1 DOTS MATRIX TOLERANCE IS \pm 0.01


MODEL NO.	VERSION	PAGE
EIML101022DYA	P	20

10. INTERFACE SIGNALS

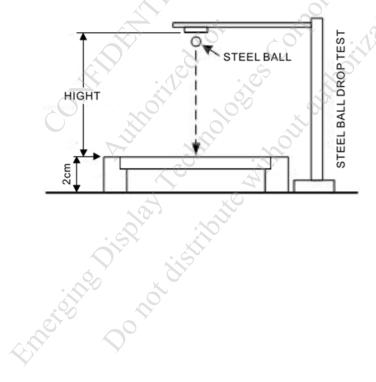
PIN NO.	SYMBOL	FUNCTION
1	VLED	POWER FOR LED BACKLIGHT(ANODE)
2	VLED	POWER FOR LED BACKLIGHT(ANODE)
3	NC	NO CONNECTION
4	VLSS	POWER FOR LED BACKLIGHT(CATHODE)
5	VLSS	POWER FOR LED BACKLIGHT(CATHODE)
6	NC	NO CONNECTION
7	AVDD	POSITIVE INPUT POWER
8	AVDD	POSITIVE INPUT POWER
9	NC	NO CONNECTION
10	AVEE	NEGATIVE INPUT POWER
11	AVEE	NEGATIVE INPUT POWER
12	OTP(NC)	NO CONNECTION
13	VSS	GROUND
14	DOP	POSITIVE MIPI DIFFERENTIAL DATA INPUT
15	DON	NEGATIVE MIPI DIFFERENTIAL DATA INPUT
16	VSS	GROUND
17	D1P	POSITIVE MIPI DIFFERENTIAL DATA INPUT
18	D1N	NEGATIVE MIPI DIFFERENTIAL DATA INPUT
19	VSS	GROUND
20	CLKP	POSITIVE MIPI DIFFERENTIAL CLK INPUT
21	CLKN	NEGATIVE MIPI DIFFERENTIAL CLK INPUT
22	VSS	GROUND
23	D2P	POSITIVE MIPI DIFFERENTIAL DATA INPUT
24	D2N	NEGATIVE MIPI DIFFERENTIAL DATA INPUT
25	VSS	GROUND
26	D3P	POSITIVE MIPI DIFFERENTIAL DATA INPUT
27	D3N	NEGATIVE MIPI DIFFERENTIAL DATA INPUT
28	VSS	GROUND
29	LCD_ID <	ID(10K TO GND)
30	LCD_REST (GLOBAL RESET PIN
31	VDD	LOGIC INPUT POWER
32	GND	GROUND
33	TP_REST	TP GLOBAL RESET PIN
34	TP_INT	TP INT PIN
35	TP_SDA	TP SDA PIN
36	TP_SCL	TP SCL PIN
37	VSS	GROUND
38	NC	NO CONNECTION
39	NC	NO CONNECTION
40	NC	NO CONNECTION

11. POWER SUPPLY

11.1 POWER SUPPLY FOR LCM

MODEL NO.	VERSION	PAGE
E I M L 1 0 1 0 2 2 D Y A	P	22

12. CAPACITIVE TOUCH PANEL SPECIFICATION


12.1 HARDNESS

ITEM	DESCRIPTION
SURFACE HARDNESS	(7)H (MIN.)

12.2 DURABILITY

USING STEEL BALL AND FALLING ON TOUCH PANEL SURFACE, FROM THE HEIGHT MUST PASS BELOW CONDITIONS:

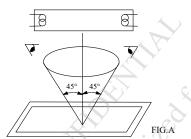
ITEM	CONDITION	INSPECTION METHOD	DESCRIPTION
STEEL BALL DROP TEST	WEIGHT: 67g HEIGHT OF FALL: 30 cm	VISUAL INSPECTION	SIGN OF FRACTURE OR DAMAGE IS NOT ACCEPTABLE 3 TIME/ 1 POINTS, 25°C (CENTER POINT)

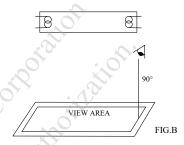
MODEL NO.	VERSION	PAGE
E I M L 1 0 1 0 2 2 D Y A	P	23

13 INSPECTION CRITERIA

13.1 APPLICATION

THIS INSPECTION STANDARD IS TO BE APPLIED TO THE LCD MODULE DELIVERED FROM EMERGING DISPLAY TECHNOLOGIES CORP.(E.D.T) TO CUSTOMERS


13.2 INSPECTION CONDITIONS


13.2.1 (1)OBSERVATION DISTANCE: 45±5cm

(2) VIEWING ANGLE: ±45°

±45° (FOR SECTION WITHIN VIEWING AREA), REFER TO FIG.A 90° (FOR SECTION OUTSIDE OF VIEWING AREA), REF TO FIG.B PERPENDICULAR TO MODULE SURFACE

VIEWING ANGLE SHOULD BE SMALLER THAN 45°

THE INSPECTION CRITERIA IS ACCORDING TO LINE OF SIGHT. INSPECTION SHALL BE MADE WITHIN THE HALF SECTION OF THE VIEWING CONE GENERATED BY LINE SEGMENT OF 45° WITH RESPECT TO THE VERTICAL AXIS FROM CENTER VERTEX OF LCD, THE FLUORESCENT LAMP AND THE CONE AXIS MUST BE PERPENDICULAR TO THE LCD SURFACE.

IF THE DEFECTS ARE OUTSIDE OF VIEWING AREA, IT SHALL BE INSPECTED BY 90° WITH RESPECT TO THE VERTICAL AXIS FROM EDGE OF VIEWING AREA.

13.2.2 ENVIRONMENT CONDITIONS:

AMBIEI	25±5°C	
AMB	$55 \pm 20\%$ RH	
AMBIENT	COSMETIC INSPECTION	600~800 lux
ILLUMINATION	FUNCTIONAL INSPECTION	200~500 lux
INS	15 secs	

13.2.3 INSPECTION LOT

QUANTITY PER DELIVERY LOT FOR EACH MODEL

13.2.4 INSPECTION METHOD

A SAMPLING INSPECTION SHALL BE MADE ACCORDING TO THE FOLLOWING PROVISIONS TO JUDGE THE ACCEPTABILITY (a)APPLICABLE STANDARD:

ANSI/ ASQ Z1.4 NORMAL INSPECTION LEVEL II

(b)AQL: MAJOR DEFECT: AQL 0.65 MINOR DEFECT: AQL 1.0

MODEL NO.	VERSION	PAGE
EIML101022DYA	P	24

13.3 DEFECTS CLASSIFICATION

TYPE OF DEFECT	INSPECTION ITEM	DEFECT FEATURE	AQL
MAJOR DEFECT	1.DISPLAY ON	DEFECT TO MISS SPECIFIED DISPLAY FUNCTION, FOR ALL AND SPECIFIED DOTS EX: DISCONNECTION, SHORT CIRCUIT ETC	
	2.CTP FUNCTION	NO FUNCTIONBROKEN LINEFALSE TOUCH	0.65
	3.BACKLIGHT	NO LIGHTFLICKERING AND OTHER ABNORMAL ILLUMINATION	
	4.DIMENSIONS	SUBJECT TO INDIVIDUAL ACCEPTANCE SPECIFICATIONS	
	1.DISPLAY ZONE	 BLACK/WHITE SPOT BUBBLES ON POLARIZER NEWTON RING BLACK/WHITE LINE SCRATCH CONTAMINATION UNEVEN COLOR SPREAD 	
MINOR DEFECT	2.BEZEL ZONE	• STAINS • SCRATCHES • FOREIGN MATTER	1.0
	3.SOLDERING 4.DISPLAY ON	 INSUFFICIENT SOLDER SOLDERED IN INCORRECT POSITION CONVEX SOLDERING SPOT SOLDER BALLS SOLDER SCRAPS LIGHT LINE 	
6.5	(ALL ON)	- LIGHT LINE	

MODEL NO. VERSION PAGE
EIML101022DYA P 25

NO.	ITEM		CRITERIA			
		1.INCORRECT PAT	1.INCORRECT PATTERN			
1	DISPLAY ON	2.MISSING SEGMEN	NT			
1	INSPECTION	3.DIM SEGMENT				
		4.OPERATING VOL	TAGE BEYOND SPEC	1		
2	OVERALL DIMENSIONS	1.OVERALL DIMEN	1.OVERALL DIMENSION BEYOND SPEC			
		(1)INSPECTION PAT	TTERN: FULL WHITE	, FULL BLACK, RED, G	REEN	
		AND BLUE SCRE	EENS.			
		(2)				
		DEFECT	TYPE CR	ITERIA		
		BRIGHT DOT		N ≤ 3		
		DARK DOT		N ≤ 4		
		TOTAL BRIGHT AND	DARK DOT	N ≤ 6		
		NOTE:				
		1. DEFINITION OF I	OOT DEFECT INDUC	ED FROM THE PANEL I	NSIDE	
		(A) BRIGHT DOT	: DOTS APPEAR BRI	GHT AND UNCHANGE	D IN	
3	DOT DEFECT		SIZE IN WHICH LO	D PANEL IS DISPLAYI	NG	
			UNDER BLACK PA	TTERN.		
		(B) DARK DOT: DOTS APPEAR DARK AND UNCHANGED IN SIZE				
		, , , , , , , , , , , , , , , , , , ,	IN WHICH LCD PANEL IS DISPLAYING UNDER			
			PURE RED, GREEN, I			
		(C) 2 DOT ADJAC	ENT = 1 PAIR = 2 DO'	ΓS		
		PICTURE:	Š	0		
		× · · · · · · · · · · · · · · · · · · ·				
		2 data di cont. 2	lot adjacent (vertical) 2 dot	- di		
		2 dor adjacent 2 d		adjacent (stant)	1	
			AVERAGE DIAMETER	NUMBER OF PIECES		
		Y	(mm) : D D ≤ 0.3	PERMITTED IGNORE		
		BUBBLE ON THE	$0.3 < D \le 0.5$	N ≤ 4		
		POLARIZER	0.5 < D	NONE		
		100	D ≤ 0.3	IGNORE		
		SURFACE STAINS	$0.3 < D \le 0.5$	N ≤ 4		
		.,57	0.5 < D	NONE		
			D ≤ 0.3	IGNORE		
		CF FAIL / SPOT	0.3 < D ≤ 0.5	N≤4		
	BUBBLES OF POLARIZER		0.5 < D	NONE		
				NED AS THE BUBBLE		
4	/DIRT/CF FAIL			THE DEFECT OF POLA		
	/SURFACE STAINS) IF THE POLARIZER E		
		APPEARS ON THE OUTSIDE OF ACTIVE DISPLAY AREA.				
		(2)THE EXTRANEOUS SUBSTANCE IS DEFINED AS IT CAN BE				
		OBSERVED WHEN THE MODULE IS POWER ON.				
		(3)THE DEFINITION OF AVERAGE DIAMETER, D IS DEFINED				
		AS FOLLOWING.				
		AVERA	AVERAGE DIAMETER (D)=(a+b)/2			
			\			
) b			
			b			

MODEL NO. VERSION PAGE
EIML101022DYA P 26

O.	ITEM		CRITERIA	
		THE FOLLOWING BLACK/WHITE SPOT ARE WITHIN THE		
		VIEWING AREA. AVERAGE DIAMETI	ER : D (mm)	/ D
5		SIZE D	PERMISSIBLE NO. D	, / р
	BLACK/WHITE	D≤0.3	IGNORE	_
	SPOT CIRCULAR	0.3 <d≤0.5< td=""><td>6</td><td></td></d≤0.5<>	6	
	TYPE	D>0.5	0	~ _ ~
		NOTE (1): THE DISTANCE BETWE	EN DEFECTS	
		SHOULD BE MORE THA		·
		THE FOLLOWING SCRATCH IS WITH		
		WIDTH: W (mm), LENGTH: L (mm)		
		SIZE W & L	PERMISSIBLE NO.	— L →
		W≤0.07	IGNORE	\
6	SCRATCH	0.07 <w≤0.1, l≤10<="" td=""><td>6</td><td>Δ</td></w≤0.1,>	6	Δ
		W>0.1	0	30
		NOTE (1): THE DISTANCE BETWE		<i>y•</i> /
		SHOULD BE MORE THA		
		THE FOLLOWING BLACK LINE, WHI		
		VIEWING AREA. WIDTH: W (mm), L		
	DI ACV /	SIZE W & L	PERMISSIBLE NO.	— L →
	BLACK / WHITE LINE	W≤0.07	IGNORE	D. V
7	LINEAR TYPE /	0.07 <w≤0.1, l≤10<="" td=""><td>6</td><td>X / `</td></w≤0.1,>	6	X / `
	FOREIGN FIBER	W>0.1	0	V ,
		NOTE (1): THE DISTANCE BETWE		
		SHOULD BE MORE THA		
		BUBBLES WITHIN VIEWING AREA.	an Iolilli Al AKI.	
		AVERAGE DIAMETER : D (mm)		
		SIZE D	PERMISSIBLE NO.	ъ.
	BUBBLE / DENT	D≤0.3	IGNORE	D _
8	FOR OPTICAL	0.3 <d≤0.5< td=""><td>6</td><td>()</td></d≤0.5<>	6	()
	BONDING	D>0.5	0	$ \sqrt{}$
		NOTE (1): THE DISTANCE BETWE		
		SHOULD BE MORE THA		
			7	Chip of glass
		II CORNER I	$Y \le 3mm \cdot Z \le t$	v
9	CHIPPING		IICKNESS)	_ z
			$Y \le 1 \text{mm}, Z < t$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
			IICKNESS)	x x
10	CRACKED GLASS	NOT ACCEPTABLE		
11	LINE DEFECT	OBVIOUS VEDTICAL OF HORIZO	NTALLINE DEEDCT IS NOT	ALLOWE
ıı	ON DISPLAY	OBVIOUS VERTICAL OR HORIZONTAL LINE DEFECT IS NOT ALLOWED.		
12		IT'S ACCEPTABLE, IF MURA AND	LEAK IS SLIGHT VISIBLE	THROUGH
	DISPLAY	FILTER.		
	UNEVEN COLOR	N Y		
13	SPREAD,	TO BE DETERMINED BASED UPO	N THE LIMITED SAMPLE.	
	COLORATION			
	BEZEL	1. BEZEL MAY NOT HAVE RUST,		INGER
14	APPEARANCE	PRINTS STAINS OF OTHER CON		
		A DESERVATION COLORS VILLENIA	OD ODECIEIO ATIONIC	
	TH TEMETICE	2. BEZEL MUST COMPLY WITH JO	JB SPECIFICATIONS.	

MODEL NO. VERSION PAGE
EIML101022DYA P 27

	_
NO. ITEM	CRITERIA
16 PCB	 THERE MAY NOT BE MORE THAN 2mm OF SEALANT OUTSIDE THE SEAL AREA ON THE PCB, AND THERE SHOULD BE NO MORE THAN THREE PLACES. NO OXIDATION OR CONTAMINATION ON PCB TERMINALS. PARTS ON PCB MUST BE THE SAME AS ON THE PRODUCTION CHARACTERISTIC CHART. THERE SHOULD BE NO WRONG PARTS, MISSING PARTS OR EXCESS PARTS. THE JUMPER ON THE PCB SHOULD CONFORM TO THE PRODUCT CHARACTERISTIC CHART. IF SOLDER GETS ON BEZEL TAB PADS, LED PAD, ZEBRA PAD OR SCREW HOLD PAD; MAKE SURE IT IS SMOOTHED DOWN.
17 SOLDERING	1. NO SOLDERING FOUND ON THE SPECIFIED PLACE 2. INSUFFICIENT SOLDER (a)LSI, IC A POOR WETTING OF SOLDER IS BETWEEN LOWER BEND OR "HEEL" OF LEAD AND PAD (b)CHIP COMPONENT SOLDER IS LESS THAN 50% OF SIDES AND FRONT FACE WETTING SOLDER FILLET SOLDER WETS 3 SIDES OF TERMINAL, BUT LESS THAN 25% OF SIDES AND FRONT SURFACE AREA ARE COVERED SOLDER 3. PARTS ALIGNMENT (a)LSI, IC LEAD WIDTH IS MORE THAN 50% BEYOND PAD OUTLINE (b)CHIP COMPONENT COMPONENT IS OFF CENTER, AND MORE THAN 50% OF THE LEADS IS OFF THE PAD OUTLINE 4. NO UNMELTED SOLDER PASTE MAY BE PRESENT ON THE PCB. S. NO COLD SOLDER JOINTS, MISSING SOLDER CONNECTIONS, OXIDATION OR ICICLE. 6. NO RESIDUE OR SOLDER BALLS ON PCB.

MODEL NO. VERSION PAGE
E I M L 1 0 1 0 2 2 D Y A P 28

NO TEST	COMPONE
NO. ITEM	CRITERIA
18 BACKLIGHT	 NO LIGHT FLICKERING AND OTHER ABNORMAL ILLUMINATION SPOTS OR SCRATCHES THAT APPEAR WHEN LIT MUST BE JUDGED USING LCD SPOT, LINES AND CONTAMINATION STANDARDS. BACKLIGHT DOESN'T LIGHT OR COLOR IS WRONG.
19 GENERAL APPEARANCE	 NO OXIDATION, CONTAMINATION, CURVES OR, BENDS ON INTERFACE PIN (OLB) OF TCP. NO CRACKS ON INTERFACE PIN (OLB) OF TCP. NO CONTAMINATION, SOLDER RESIDUE OR SOLDER BALLS ON PRODUCT. THE IC ON THE TCP MAY NOT BE DAMAGED, CIRCUITS. THE UPPERMOST EDGE OF THE PROTECTIVE STRIP ON THE INTERFACE PIN MUST BE PRESENT OR LOOK AS IF IT CAUSE THE INTERFACE PIN TO SEVER. THE RESIDUAL ROSIN OR TIN OIL OF SOLDERING (COMPONENT OR CHIP COMPONENT) IS NOT BURNED INTO BROWN OR BLACK COLOR. SEALANT ON TOP OF THE ITO CIRCUIT HAS NOT HARDENED. PIN TYPE MUST MATCH TYPE IN SPECIFICATION SHEET. LCD PIN LOOSE OR MISSING PINS. PRODUCT PACKAGING MUST BE THE SAME AS SPECIFIED ON PACKAGING SPECIFICATION SHEET. PRODUCT DIMENSION AND STRUCTURE MUST CONFORM TO PRODUCT SPECIFICATION SHEET. THE APPEARANCE OF HEAT SEAL SHOULD NOT ADMIT ANY DIRT AND BREAK.
	Anerdine Display distribute without

MODEL NO. VERSION PAGE EIML101022DYA P 29

14 RELIABILITY TEST

14.1 STANDARD SPECIFICATIONS FOR RELIABILITY OF LCD MODULE

NO.	ITEM	DESCRIPTION
1	HIGH TEMPERATURE TEST (OPERATION)	THE SAMPLE SHOULD BE ALLOWED TO STAND AT (+70°C) FOR 240 HRS
2	LOW TEMPERATURE TEST (OPERATION)	THE SAMPLE SHOULD BE ALLOWED TO STAND AT (-20°C) FOR 240 HRS
3	HIGH TEMPERATURE TEST (STORAGE)	THE SAMPLE SHOULD BE ALLOWED TO STAND AT (+70°C) FOR 240 HRS
4	LOW TEMPERATURE TEST (STORAGE)	THE SAMPLE SHOULD BE ALLOWED TO STAND AT (-20°C) FOR 240 HRS
5	HIGH TEMPERATURE / HUMIDITY TEST (STORAGE)	THE SAMPLE SHOULD BE ALLOWED TO STAND AT 60°C, 90% RH 240 HRS
6	THERMAL SHOCK TEST (NOT OPERATED)	THE SAMPLE SHOULD BE ALLOWED TO STAND THE FOLLOWING 10 CYCLES OF OPERATION: (+70°C) (-20°C) (-20°C) (-20°C) (-20°C)
7	(ELECTROSTATIC DISCHARGE) (NOT OPERATED)	AIR DISCHARGE ± 12KV CONTACT DISCHARGE ± 8KV (ACCORDING TO IEC-61000-4-2)

NOTE (1) : THE TEST SAMPLES HAVE RECOVERY TIME FOR 2 HOURS AT ROOM TEMPERATURE BEFORE THE FUNCTION CHECK. IN THE STANDARD CONDITIONS, THERE IS NO DISPLAY FUNCTION NG ISSUE OCCURRED.

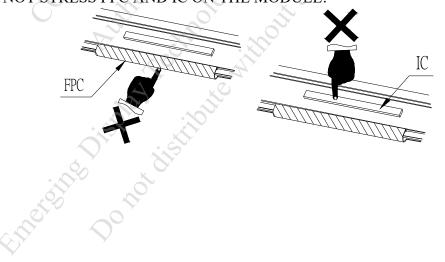
NOTE (2): WHEN THE LCD MODULE IS OPERATED AT A HIGHER AMBIENT TEMPERATURE THAN 60°C, THE PWM DUTY CYCLE OF THE LED BACKLIGHT SHOULD BE ADJUSTED TO BE LESS THAN TBD%. IF THE MODULE IS OPERATED AT A HIGHER DUTY CYCLE THAN TBD, THEN THERE IS A POSSIBILITY OF DISTORTION AND IRREGULARITY OF THE PICTURE DUE TO LIQUID CRYSTAL BEHAVIOR.

NOTE (3): TESTING CONDITIONS AND INSPECTION CRITERIA

NO.	ITEM	TEST MODEL	INSPECTION CRITERIA
1	CURRENT	L REFER TO SPECIFICATION	THE CURRENT CONSUMPTION SHOULD
1	CONSUMPTION		CONFORM TO THE PRODUCT SPECIFICATION.
			AFTER THE TESTS HAVE BEEN EXECUTED, THE
2	CONTRAST		CONTRAST MUST BE LARGER THAN HALF OF
			ITS INITIAL VALUE PRIOR TO THE TESTS.
3	APPEARANCE	VISUAL INSPECTION	DEFECT FREE

MODEL NO.	VERSION	PAGE
EIML101022DYA	P	30

15. CAUTION


15.1 OPERATION

- 15.1.1 DO NOT CONNECT OR DISCONNECT MODULES TO OR FROM THEMAIN SYSTEM WHILE POWER IS BEING SUPPLIED .
- 15.1.2 USE THE MODULE WITHIN SPECIFIED TEMPERATURE; LOWER TEMPERATURE CAUSES THE RETARDATION OF BLINKING SPEED OF THE DISPLAY; HIGHER TEMPERATURE MAKES OVERALL DISPLAY DISCOLOR.

 WHEN THE TEMPERATURE RETURNS TO NORMALITY, THE DISPLAY
 - WHEN THE TEMPERATURE RETURNS TO NORMALITY, THE DISPLAY WILL OPERATE NORMALLY.
- 15.1.3 ADJUST THE LC DRIVING VOLTAGE TO OBTAIN THE OPTIMUM CONTRAST.
- 15.1.4 POWER ON SEQUENCE INPUT SIGNALS SHOULD NOT BE SUPPLIED TO LCD MODULE BEFORE POWER SUPPLY VOLTAGE IS APPLIED AND REACHES THE SPECIFIED VALUE.

 IF ABOVE SEQUENCE IS NOT FOLLOWED, CMOS LSIS OF LCD MODULES MAY BE DAMAGED DUE TO LATCH UP PROBLEM.
- 15.1.5 NOT ALLOWED TO INFLICT ANY EXTERNAL STRESS AND TO CAUSE ANY MECHANICAL INTERFERENCE ON THE BENDING AREA OF FPC DURING THE TAIL BENDING BACKWARDS!

 DO NOT STRESS FPC AND IC ON THE MODULE!

MODEL NO. VERSION PAGE E I M L 1 0 1 0 2 2 D Y A P 31

15.2 NOTICE

- 15.2.1 USE A GROUNDED SOLDERING IRON WHEN SOLDERING CONNECTOR I/O TERMINALS . FOR SOLDERING OR REPAIRING, TAKE PRECAUTION AGAINST THE TEMPERATURE OF THE SOLDERING IRON AND THE SOLDERING TIME TO PREVENT PEELING OFF THE THROUGHHOLE-PAD .
- 15.2.2 DO NOT DISASSEMBLE . EDT SHALL NOT BE HELD RESPONSIBLE IF THE MODULE IS DISASSEMBLED AND UPON THE REASSEMBLY THE MODULE FAILED .
- 15.2.3 DO NOT CHARGE STATIC ELECTRICITY, AS THE CIRCUIT OF THIS MODULE CONTAINS CMOS LSIS. A WORKMAN'S BODY SHOULD ALWAYS BE STATIC-PROTECTED BY USE OF AN ESD STRAP. WORKING CLOTHES FOR SUCH PERSONNEL SHOULD BE OF STATIC-PROTECTED MATERIAL.
- 15.2.4 ALWAYS GROUND THE ELECTRICALLY-POWERED DRIVER BEFORE USING IT TO INSTALL THE LCD MODULE. WHILE CLEANING THE WORK STATION BY VACUUM CLEANER, DO NOT BRING THE SUCKING MOUTH NEAR THE MODULE; STATIC ELECTRICITY OF THE ELECTRICALLY-POWERED DRIVER OR THE VACUUM CLEANER MAY DESTROY THE MODULE.
- 15.2.5 DON'T GIVE EXTERNAL SHOCK.
- 15.2.6 DON'T APPLY EXCESSIVE FORCE ON THE SURFACE.
- 15.2.7 LIQUID IN LCD IS HAZARDOUS SUBSTANCE. MUST NOT LICK AND SWALLOW.

 WHEN THE LIQUID IS ATTACH TO YOUR, SKIN, CLOTH ETC.

 WASH IT OUT THOROUGHLY AND IMMEDIATELY.
- 15.2.8 DON'T OPERATE IT ABOVE THE ABSOLUTE MAXIMUM RATING.
- 15.2.9 STORAGE IN A CLEAN ENVIRONMENT, FREE FROM DUST, ACTIVE GAS AND SOLVENT.
- 15.2.10 STORE WITHOUT ANY PHYSICAL LOAD.
- 15.2.11 REWIRING: NO MORE THAN 3 TIMES.